pactools.Comodulogram¶
-
class
pactools.
Comodulogram
(fs, low_fq_range, low_fq_width=2.0, high_fq_range='auto', high_fq_width='auto', method='tort', n_surrogates=0, vmin=None, vmax=None, progress_bar=True, ax_special=None, minimum_shift=1.0, random_state=None, coherence_params={}, extract_params={}, low_fq_width_2=4.0, n_jobs=1)[source]¶ An object to compute the comodulogram for phase-amplitude coupling.
- Parameters
- fsfloat
Sampling frequency
- low_fq_rangearray or list
List of filtering frequencies (phase signal)
- high_fq_rangearray or list or ‘auto’
List of filtering frequencies (amplitude signal) If ‘auto’, it uses np.linspace(max(low_fq_range), fs / 2.0, 40).
- low_fq_widthfloat
Bandwidth of the band-pass filter (phase signal)
- high_fq_widthfloat or ‘auto’
Bandwidth of the band-pass filter (amplitude signal) If ‘auto’, it uses 2 * max(low_fq_range).
- methodstring or DAR instance
Modulation index method:
- String in (‘ozkurt’, ‘canolty’, ‘tort’, ‘penny’, ), for a PAC
estimation based on filtering and using the Hilbert transform.
- String in (‘vanwijk’, ) for a joint AAC and PAC estimation
based on filtering and using the Hilbert transform.
- String in (‘sigl’, ‘nagashima’, ‘hagihira’, ‘bispectrum’, ), for
a PAC estimation based on the bicoherence.
- String in (‘colgin’, ) for a PAC estimation
and in (‘jiang’, ) for a PAC directionality estimation, based on filtering and computing coherence.
- String in (‘duprelatour’, ) or a DAR instance, for a PAC estimation
based on a driven autoregressive model.
- n_surrogatesint
Number of surrogates computed for the z-score If n_surrogates <= 1, the z-score is not computed.
- vmin, vmaxfloat or None
If not None, it define the min/max value of the plot.
- progress_barboolean
If True, a progress bar is shown in stdout.
- ax_specialmatplotlib.axes.Axes or None
If not None, a special figure is drawn on it, depending on the PAC method used.
- minimum_shiftfloat
Minimum time shift (in sec) for the surrogate analysis.
- random_stateNone, int or np.random.RandomState instance
Seed or random number generator for the surrogate analysis.
- coherence_paramsdict
Parameters for methods base on coherence or bicoherence. May contain:
- -block_lengthint
Block length
- -fft_lengthint or None
Length of the FFT
- -stepint or None
Step between two blocks
If the dictionary is empty, default values will be applied based on fs and low_fq_width, with 0.5 overlap windows and no zero-padding.
- extract_paramsdict
Parameters for DAR models driver extraction
- low_fq_width_2float
Bandwidth of the band-pass filters centered on low_fq_range, for the amplitude signal. Used only with ‘vanwijk’ method.
- n_jobsint
Number of jobs to use in parallel computations. Recquires scikit-learn installed.
Examples
>>> from pactools.comodulogram import Comodulogram >>> c = Comodulogram(fs=200., low_fq_range=np.arange(2, 4, 0.2), ... low_fq_width=2.) >>> c.fit(signal_in) >>> c.plot() >>> comod_array = c.comod_
-
__init__
(self, fs, low_fq_range, low_fq_width=2.0, high_fq_range='auto', high_fq_width='auto', method='tort', n_surrogates=0, vmin=None, vmax=None, progress_bar=True, ax_special=None, minimum_shift=1.0, random_state=None, coherence_params={}, extract_params={}, low_fq_width_2=4.0, n_jobs=1)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(self, fs, low_fq_range[, …])Initialize self.
fit
(self, low_sig[, high_sig, mask])Call fit to compute the comodulogram.
get_maximum_pac
(self)Get maximum PAC value in a comodulogram.
plot
(self[, titles, axs, cmap, vmin, vmax, …])Plot the comodulograms computed during the fit
save
(self, fname[, overwrite])Save a comodulogram object on disk with h5py.
Attributes
comod_z_score_
Compute the z-score based on the comodulogram and the surrogates
surrogate_max_
Compute the distribution of maxima of the surrogates comodulograms