pactools.DelayEstimator

class pactools.DelayEstimator(fs, dar_model, low_fq, low_fq_width, max_delay='auto', refit=True, random_state=None)[source]

Estimate the optimal delay between the two components in PAC

In phase-amplitude coupling (PAC), the slow oscillation and the fast oscillations may be shifted in time with a constant temporal delay. This estimator compute the optimal delay, based on the maximum likelihood of DAR models.

Parameters
fsfloat

Sampling frequency

dar_modelDAR instance

DAR model used to fit the signal

low_fqfloat

Filtering frequency (phase signal)

low_fq_widthfloat

Bandwidth of the band-pass filter (phase signal)

max_delayfloat or ‘auto’

The delay grid will range from -max_delay to max_delay. If ‘auto’, it uses 0.5 / low_fq.

refitboolean, default True

If True, the model will be refitted with the best delay obtained

random_stateNone, int or np.random.RandomState instance

Seed or random number generator for the surrogate analysis.

References

Dupre la Tour et al. (2017). Non-linear Auto-Regressive Models for Cross-Frequency Coupling in Neural Time Series. bioRxiv, 159731.

__init__(self, fs, dar_model, low_fq, low_fq_width, max_delay='auto', refit=True, random_state=None)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__(self, fs, dar_model, low_fq, …[, …])

Initialize self.

fit(self, low_sig[, high_sig, mask])

Compute peak-locked time-averaged and time-frequency representations.

plot(self[, ax, write_tau])

Returns

Examples using pactools.DelayEstimator