pactools.dar_model.DAR¶
-
class
pactools.dar_model.
DAR
(ordar=1, ordriv=0, criterion=None, normalize=True, ortho=True, center=True, iter_gain=10, eps_gain=0.0001, progress_bar=False, use_driver_phase=False, max_ordar=None, warn_gain_estimation_failure=False)[source]¶ A driven auto-regressive (DAR) model, as described in [1].
This model uses the simple parametrization:
\[y(t) + \sum_{i=1}^p a_i(t) y(t-i)= \sigma(t)\varepsilon(t)\]with:
\[a_i(t) = \sum_{k=0}^m a_{ik} x(t)^k\]and:
\[\log{\sigma(t)} = \sum_{k=0}^m b_{k} x(t)^k\]- Parameters
- ordarint >= 0
Order of the autoregressive model (p)
- ordrivint >= 0
Order of the taylor expansion for sigdriv (m)
- criterionNone or string in (‘bic’, ‘aic’, ‘logl’)
If not None, select the criterion used for model selection.
- normalizeboolean
If True, the basis vectors are normalized to unit energy.
- orthoboolean
If True, the basis vectors are orthogonalized.
- centerboolean
If True, we subtract the mean in sigin
- iter_gainint >=0
Maximum number of iteration in gain estimation
- eps_gainfloat >= 0
Threshold to stop iterations in gain estimation
- use_driver_phaseboolean
If True, we divide the driver by its instantaneous amplitude.
References
[1] Dupre la Tour, T. , Tallot, L., Grabot, L., Doyere, V., van Wassenhove, V., Grenier, Y., & Gramfort, A. (2017). Non-linear Auto-Regressive Models for Cross-Frequency Coupling in Neural Time Series. bioRxiv, 159731.
-
__init__
(self, ordar=1, ordriv=0, criterion=None, normalize=True, ortho=True, center=True, iter_gain=10, eps_gain=0.0001, progress_bar=False, use_driver_phase=False, max_ordar=None, warn_gain_estimation_failure=False)¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(self[, ordar, ordriv, criterion, …])Initialize self.
copy
(self)Creates a (deep) copy of a model
degrees_of_freedom
(self)Number of parameters of the fitted model
fit
(self, sigin, sigdriv, fs[, …])Estimate the model from input signals
fit_transform
(self, sigin, sigdriv, fs[, …])Same as fit, but returns the residual instead of the model object
get_criterion
(self, criterion[, train])Get the criterion (logL, AIC, BIC) of the fitted model
get_title
(self[, name, criterion])Get the name and orders of the model
likelihood_ratio
(self, ar0)Computation of the likelihood ratio test
plot
(self[, title, frange, mode, vmin, …])Plot the PSD as a function of the driver
plot_lines
(self[, title, frange, mode, ax, …])Plot the PSD as a function of the driver
transform
(self, sigin, sigdriv, fs[, …])Whiten a signal with the already fitted model
Attributes
aic
Akaike information criterion (AIC) of the model
bic
Bayesian information criterion (BIC) of the model
logl
Log likelihood of the model
ordar_
AR order of the model, different from self.ordar if a model selection has been performed
tmax
Scaling of self.logl, self.aic, and self.bic