pactools.utils.fir.BandPassFilter¶
-
class
pactools.utils.fir.
BandPassFilter
(fs, fc, n_cycles=7.0, bandwidth=None, zero_mean=True, extract_complex=False)[source]¶ Band-pass FIR filter
Designs a band-pass FIR filter centered on frequency fc.
- Parameters
- fsfloat
Sampling frequency
- fcfloat
Center frequency of the bandpass filter
- n_cyclesfloat or None, (default 7.0)
Number of oscillation in the wavelet. None if bandwidth is used.
- bandwidthfloat or None, (default None)
Bandwidth of the FIR wavelet filter. None if n_cycles is used.
- zero_meanboolean, (default True)
If True, the mean of the FIR is subtracted, i.e. fir.sum() = 0.
- extract_complexboolean, (default False)
If True, the wavelet filter is complex and
transform
returns two signals, filtered with the real and the imaginary part of the filter.
Examples
>>> from pactools.utils import BandPassFilter >>> f = BandPassFilter(fs=100., fc=5., bandwidth=1., n_cycles=None) >>> f.plot() >>> signal_out = f.transform(signal_in)
-
__init__
(self, fs, fc, n_cycles=7.0, bandwidth=None, zero_mean=True, extract_complex=False)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(self, fs, fc[, n_cycles, …])Initialize self.
plot
(self[, axs, fscale, colors])Plots the impulse response and the transfer function of the filter.
transform
(self, sigin[, out, out_imag])Apply this filter to a signal