pactools.ExtractDriver¶
-
class
pactools.
ExtractDriver
(fs, low_fq, max_low_fq, low_fq_width=1.0, fill=2, whitening='after', ordar=10, normalize=False, extract_complex=True, random_state=None, enf=50.0)[source]¶ Returns bandpass filtered and a highpass filtered signals
- Parameters
- fsfloat
Sampling frequency
- low_fqfloat
Center frequency of bandpass filters.
- max_low_fqfloat
Maximum low_fq over a potential cross-validation scheme.
- low_fq_widthfloat
Bandwidth of the bandpass filters.
- fillin {0, 1, 2}
Filling strategy for the modeled signal sigin: 0 : keep the signal unchanged: sigin = high_sig 1 : remove the bandpass filtered signal: sigin = high_sig - sigdriv 2 : remove and replace by bandpass filtered Gaussian white noise
- whiteningin {‘before’, ‘after’, None}
Define when the whitening is done compared to the filtering.
- ordarint >= 0
Order of the AR model used for whitening
- normalizeboolean
Whether to scale the signals to have unit norm sigin. Both drivers sigdriv and sigdriv_imag are scaled with the same scales.
- extract_complexboolean
Whether to extract a complex driver (sigdriv and sigdriv_imag)
- random_stateNone, int or np.random.RandomState instance
Seed or random number generator for the white noise filling strategy.
- enffloat
Electric Network Frequency
Examples
>>> from sklearn.model_selection import GridSearchCV >>> from sklearn.pipeline import pipeline >>> from pactools.grid_search import DARSklearn, ExtractDriver >>> from pactools.grid_search import MultipleArray >>> param_grid = { ... 'dar__ordar': [10, 20, 30], ... 'dar__ordriv': [0, 1, 2], ... 'driver__low_fq': [4.0, 4.5, 5.0] ... } >>> model = Pipeline(steps=[ ... ('driver', ExtractDriver(fs=fs, max_low_fq=5.0)), ... ('dar', DARSklearn(fs=fs, max_ordar=30)), ... ]) >>> X = MultipleArray(low_sig, None) >>> gscv.fit(X) >>> print(gscv.cv_results_)
-
__init__
(self, fs, low_fq, max_low_fq, low_fq_width=1.0, fill=2, whitening='after', ordar=10, normalize=False, extract_complex=True, random_state=None, enf=50.0)[source]¶ Initialize self. See help(type(self)) for accurate signature.
Methods
__init__
(self, fs, low_fq, max_low_fq[, …])Initialize self.
fit
(self, X[, y])No fit is needed
fit_transform
(self, X[, y])Fit to data, then transform it.
get_params
(self[, deep])Get parameters for this estimator.
set_params
(self, \*\*params)Set the parameters of this estimator.
transform
(self, X[, y])- Parameters